

Distribution

Distribution is

Broad typology of challenges...

Water security: synopsis of demand, supply and stocks

SUMMARY: Groundwater development and management

Groundwater: "lender of the last resort"

- More than 30 million wells, with at least 60% accessing groundwater in some form of the other
- Uncertain civic water supply offset by dependence on groundwater – springs, tube wells, bore wells and tankers
- One of the largest supplementary sources of industrial water supply

India's Lithodiversity...

Mountain Systems – rock structure plays a significant role in groundwater occurrence and movement.

Alluvial (Unconsolidated) Systems - water in sand and silt lenses, with clays separating aquifers.

Sedimentary (Soft Rock) Systems - coarse sandstone, grit, coal, fossil-bearing rocks - usually contain many openings and water travels through them quickly

Sedimentary (Hard Rock) Systems sandstones, limestones, siltstones; contain; bedding, fractures and joints may play a significant role in groundwater storage and movement

Volcanic Systems - mostly basalt – some dykes - water stored in vesicles and weathered zones - movement mostly through joints

Crystalline (Basement) Systems - granites, schists, gneisses - groundwater accumulates and moves through weathered zone, joints and fractures

Karst springs, contact springs

Contact springs

Fracture springs

After: COMMAN 2005; GSI (various years), ACWADAM (various publ.), CGWB (2012)

All types – fracture springs dominate?

Depression springs

Contact, depression & fracture springs

...so are springs tapping mountain aquifers

Springs and aquifers: discharge trends – annual cycle

Describing a spring based on its discharge

Spring discharge: accumulation and flow in underlying aquifers

Spring discharge: mostly likely aquifer types

Indicator matrix

	Recharge zone - proximity to spring	Recharge zone - size	
Spring 3	Could be either closeby or far away (large aquifer storage)	Large	
Spring 2	At distance	Small	
Spring 4	At distance (moderate to low transmissivity)	Large	
Spring 1	Very close	Small, probably negligible	

Aquifer: an entity in many dimensions...

Groundwater management

Understanding multiple dimensions

Sources and resources

Time: seasonal and long-term

Quantity and quality

Externality: challenge and opportunity – one well, one month, variability in energy input

	Comparison of approaches							
	Conservation	Recharge	Sources	Water budgeting	Resource focus			
Watershed approach	Major	Incidental, but impact indicator groundwater	Not necessarily important	Sometimes	Watershed focus strong			
Drinking water pilots	Minor	Major focus	Major focus around source sustainability	Seldom	Prospects of groundwater			
Crop-water budgeting	Fairly high	Fairly high	Every source monitored but drinking water a clear focus only at times	Very strong and basis for interventions	HUN – Mainly watersheds			
PGWM	Major focus, with indicator being drinking	One of the major focal interventions	Push to 'community' sources from	Water balance, followed by	Aquifers (mostly as part of watersheds)			

'individual

ones'

some degree

of water

budgeting

water security

Unpacking the key elements

...aquifer based groundwater management

- To understand groundwater resources in all their dynamics
 - Hydrogeology quantities and quality
 - Uses, users and the "aquifer/groundwater community"
- Current state of groundwater resources degree of depletion
 - Primary and secondary data collection
 - Exploring past and present patterns of use
- To understand the status of groundwater quality and its impact on living beings
 - Water quality investigation, including past data
 - Health data surveys
- To study the availability, demand and supply
 - Patterns of water use, estimate demand and analyse supply
 - Estimate groundwater resources availability under various scenarios
- To facilitate the community in the process of decision making for the sustainable and equitable management of groundwater resources
 - Institutional framework development (including linkages to PRIs)
 - Capacity building and communication
 - Exposure visits
 - Participatory decision making system
- Robust regulation to account for various externalities
 - Social regulation at local levels
 - Statal legislation with major revamp of current legislative systems

Participation key to each of these...

High dependence, low attention...

- Focus on supply side
- Sometimes innovative augmentation approaches
- Not always sustainable, in the absence of managing demand

Understanding availability (at the scales of a 'resource') not always a priority

Managing demand and equitable distribution is often not perceived as 'low-hanging fruit'

Aquifers as CPR

One village with two aquifers...acute drinking water crisis

Aquifer 1 farmers

- Uplands
- Mostly small land-holdings
- Mostly rainfed farming
- Wells with poor yields, probably seasonal
- Acute scarcity in summer
- Water quality not a major issue

Aquifer 2 farmers

- Low-lying, often fertile lands
- Mostly medium to large landholdings
- Mostly irrigated farming
- Wells with high yields, perennial
- No scarcity, even in summer
- Water quality is a major issue, water scarcity negligible

Why legislate if people participate...?

Protocols	Typology 1	Typology 2	Typology 3	Typology 4	Typology 5	Typology 6
Geohydrology in WSD including groundwater recharge	* ?		*	*		* √
Protection of recharge areas	*	*	* Land- use protection ?	* ✓		* ✓
Efficient well use			* ?	*		
Pump capacity regulation		*	*		*	
Distance (wrt drinking water well) regulation	*	*	*	*	* ?	
Depth Regulation (wrt drinking well)	*	* ?	*		?	
Regulation of Agricultural water use	*	*	*	*	*	
Groundwater management through sharing	* User groups ✓ Nachanbor	* Sharing	* Sharing ✓ Patpadi	* User groups √ Borkhalya	* User groups	ACWADAM

Understanding the 'common pool' nature of groundwater

- People are more likely to participate if the focus on groundwater-related development work shifts from sources to the resource (aquifers)
- Protection of groundwater resources not possible unless users agree to "co-operate" in the process of groundwater management
- Partnerships and collaborations important given the nature of groundwater competition and potential conflict:
 - Users: farmer vs farmer; industry vs industry; households vs households
 - Uses: drinking water vs agriculture; agriculture vs industry; anthropogenic uses vs ecology

Aquifer: an entity in many dimensions...

Situations

extra

and

Jsage

Punjab, Haryana, parts of Peninsular India

Central India; parts of the Indo-Gangetic basin; parts of the middle Himalayan region including the emerging agrarian regions of Himalayan Highlands

Ess &ESSs)

?Areas with heavy mining relatively low agrarian footp 's – parts of Chhatisgarh and Odi as well as parts of Goa...??

India, parts of Eastern India, especially the Northern part of sern Ghats and the Southern part of Western Ghats

Typology of agro-eco systems

Industrial agriculture; arid agrarian Small-holder agriculture systems Ecosystem 'preserves' Some pastoral systems

Interventions

Opportunistic – comprehensive set Pull back of interventions Unconventional Regulated / strategic development

Scenarios

Groundwater resources

GROUNDWATER GOVERNANCE...

SCIENCE, PARTICIPATION AND REGULATION

 Transparency, participation, information, custom & rule of law is a <u>process</u>

The <u>art</u> of administrative action and decision making

Balance between protection (aquifers) & moderation of use – to forge the right balance between human and environmental needs

Protocols	Mountains	Alluvial	Sedimentary	Volcanic	Crystalline
Groundwater recharge through watershed management approaches				V	V
Protection of recharge areas (aquifers) – ecosystem service			V		
Efficient well use (wells) including optimising energy input		√			
Pump capacity regulation (wells)	management are often mechanisms of				√
Regulating distances between sources		adaptation			√
Regulating depths of sources					\checkmark
Regulation of agricultural water use – cropping, farm management and technology		1		√	√
Aquifer based groundwater budgeting			√	1	ACWADAM

Advanced Center for Water Resources Development and Management (ACWADAM)
Plot 4, Lenyadri society, Sus road, Pashan, Pune-411021. 2020-25871539

