

Five districts of North Bihar flood plain: competing sources??

Trends: dug wells vs tube wells

Trends for surface and groundwater irrigation plotted from Shah (2009)

NIA, surface water & groundwater

Groundwater development..index

India's oft-unfathomed groundwater

dependence

Use & users

- 30 million wells, at least every fourth farmer has a well
- Used for drinking water, agriculture and industry

Dependence

- Rural drinking water: almost entirely groundwater – 80 to 95%
- Agriculture: ???60-70%??1 of total use
- Urban: 48% of total use

Supply, to meet a growing & competitive demand...

Competition - conflicts

- Intense competition before conflicts
 - partial visibility and complexity surrounding resource and a perception that usage by a user can lead to reduced availability for others.
- Competition between users (same purpose) and between different types of uses
 - Largely individualistic development of the resource and the linkage of land ownership and access to groundwater.
- Competition depends upon nature of the resource.
 - A poor understanding of the aquifers.
 - Lack of data at the appropriate scale.

Competition before conflict

- Partial visibility
- Complexity surrounding the resource
- Subtractibility usage by a user leads to reduced availability for others

Typology 3 dug well One ha model: land and aquifer

Pumping from well affects aquifer under 1 ha only.

TYPOLOGY 3

4500m3 of water can be stored on an average in the aquifer underneath 1ha every year.

Typology 5 1 Hectare Borewell Model

Pumping from well affects aquifer under 8 ha of land today

TYPOLOGY 5

200m¹ can be stored on an average in the aquifer underneath 1ha every year. So it would require 8ha of aquifer area to provide the water to fulfill the requirement.

Groundwater: shift in focus needed – from sources...

...to a 'resource', i.e. aquifers

Competition: users & uses

- Users compete for the same use
 - Farmer versus farmer
 - Industry versus another industry
 - One village versus another village
 - One town versus another town
 - Village versus township
- Users compete for different uses
 - Drinking water need versus irrigation needs
 - Irrigation versus industry
 - Drinking water versus industry
 - Irrigation versus domestic demand by a town / city
- Largely individualistic development of the resource and the linkage of land ownership and access to groundwater.

Each well is different: even in a single aquifer...

ACWADAM

Competition: nature of resource

 A poor understanding of the aquifers has limited the understanding of competition and conflicts

 Lack of data at the appropriate scale has also led to speculations and confusion on groundwater conflicts

GROUNDWATER MANAGEMENT: Alluvial aquifers

Village 1: Taps a shallow aquifer

Village 2: Taps a separate shallow aquifer

Village 3: Taps a third, separate shallow aquifer

Recharge is greater for aquifer in village 1 than for the other aquifers.

Four villages share one single aquifer

The main recharge zone for the single aquifer is the fracture zone passing through village 2.

GROUNDWATER AS A COMMON POOL RESOURCE

Starting point: 'Fragility' of groundwater resources - quantity and quality.

- Diversity in groundwater conditions geology and hydrogeology
- Groundwater as a CPR issue of equity, e.g. delinking of land and water rights.
- Efficiency of use what is possible at the farm level, without disturbing equity and sustainability.
- Sustainability long term trends balance between resource condition and resource use

Exploitation and contamination

What does this mean on the ground?

Aquifer typology within a block...

Base flow in India's groundwater assessment...

CGWB (2006; 2011)

Base Flows (mm)

2009

Groundwater: "lender of the last resort"

- More than 30 million wells, with twice that number accessing groundwater
- Uncertain civic water supply offset by dependence on groundwater – springs, tube wells, bore wells and tankers
- One of the largest supplementary sources of industrial water supply

Groundwater: vulnerability to exploitation and contamination

- 60% districts vulnerable to exploitation and/or contamination
- "Slipback" habitations / villages...drinking water supply
- Unhealthy competition, potential conflicts...
- Health-related hazards: arsenicosis, fluorosis, selenicosis, Uranium-poisoning and temporary morbidity

Annual demand in a typical Indian village

1 village, 1000 ha; 500 ha (agriculture); 100 hhs; 500 popn

Seasonality of demand

Changes in aquifer storage (wells)

Annual demand in a typical Indian (mountain) village

1 village, 300 ha; 100 ha (agriculture); **ANNUAL QUANTITIES IN mm** 100 hhs; 500 popn ■ Human drinking water Human household domestic water Animals ■ Rainfed agriculture kharif 56 ■ Irrigated agriculture - rabi Irrigated agriculture summer

Seasonality of demand - springs

Changes in aquifer storage (springs)

Advanced Center for Water Resources Development and Management (ACWADAM)

Plot 4, Lenyadri society, Sus road, Pashan, Pune-411021.

2020-25871539;

Email: acwadam@vsnl.net; Website: www.acwadam.org

